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Species delimitation is a major research focus in evolutionary biology because accurate species boundaries are a prerequisite for

the study of speciation. New species delimitation methods (SDMs) can accommodate nonmonophyletic species and gene tree

discordance as a result of incomplete lineage sorting via the coalescent model, but do not explicitly accommodate gene flow

after divergence. Approximate Bayesian computation (ABC) can incorporate gene flow and estimate other relevant parameters of

the speciation process while testing alternative species delimitation hypotheses. We evaluated the accuracy of BPP, SpeDeSTEM,

and ABC for delimiting species using simulated data and applied these methods to empirical data from lizards of the Liolaemus

darwinii complex. Overall, BPP was the most accurate, ABC showed an intermediate accuracy, and SpeDeSTEM was the least

accurate under most simulated conditions. All three SDMs showed lower accuracy when speciation occurred despite gene flow, as

found in previous studies, but ABC was the method with the smallest decrease in accuracy. All three SDMs consistently supported

the distinctness of southern and northern lineages within L. darwinii. These SDMs based on genetic data should be complemented

with novel SDMs based on morphological and ecological data to achieve truly integrative and statistically robust approaches to

species discovery.
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The practice of species delimitation is a major research fo-

cus in evolutionary biology because the accurate assessment of

species boundaries is a prerequisite for the study of speciation.

Progress has been made in the species concept (de Queiroz 2011;

Hausdorf 2011) but the issue of delimiting species in practice has

received little attention (Wiens 2007). However, species delimi-

tation has been a growing topic in the literature (see results of

database searches in Appendix S1) and criteria continue to be

introduced (reviewed in Marshall et al. 2006). These include in-

ference keys with assessments of gene flow (Wiens and Penkrot

2002), measures of lineage exclusivity (Cummings et al. 2008),

a statistical fit of the threshold between inter- and intraspecific
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divergence (Pons et al. 2006), and more recently, optimization

approaches for minimizing gene tree discordance across species

limits (O’Meara 2010). The practice of species delimitation with

molecular data is expanding rapidly due in part to the development

of the multispecies coalescent (Rannala and Yang 2003; Degnan

and Rosenberg 2009), and the application of this framework for

inference of species relationships (Edwards 2009).

Most coalescent-based species delimitation methods (SDMs)

can accommodate incomplete lineage sorting (ILS) via the coa-

lescent model (Knowles and Carstens 2007). In this context, large

ancestral population sizes and shallow divergence times are ex-

pected to increase levels of ILS (Funk and Omland 2003). One

approach consists of hypothesizing a species tree and associated

species boundaries, and then calculating the probability of all

gene trees under that species history. Subsequently, likelihoods

are calculated for nested species histories (as when two species

are collapsed into one) and a likelihood ratio statistic is used to

test the null hypothesis of no-speciation (Knowles and Carstens

2007). However, when models of species limits are nonnested, a

more appropriate approach uses Akaike information criteria (AIC)

to test alternatives (Carstens and Dewey 2010). This method is

implemented in the java pipeline SpeDeSTEM 0.1.1 (Ence and

Carstens 2011), based on the program STEM 1.0, assuming that

gene trees are known without error (point estimates) and that

population sizes have remained constant along the species tree

(Kubatko et al. 2009). In this approach, a molecular clock is en-

forced on estimated gene trees, the mutation rate parameter (θ)

is estimated from the data, and species trees are reestimated for

each species delimitation hypothesis.

An alternative Bayesian approach consists of sampling from

the posterior distribution of models of species limits using

reversible-jump Markov chain Monte Carlo (rjMCMC) as im-

plemented in the program BPP 2.1 (Yang and Rannala 2010).

This approach uses a fixed, fully resolved guide tree of species

lineages, which is used to derive alternative models of species

limits by sequentially collapsing internal nodes. Priors should be

given for population sizes and divergence times of the species tree

in addition to the priors and proposal mechanisms of the regular

MCMC chains for estimating gene trees. Therefore, in this ap-

proach, the uncertainty in the gene trees is explicitly incorporated

in the models, θ is estimated and allowed to vary along the species

tree, but a fixed species tree topology should be provided a priori.

Coalescent methods used in current species delimitation ap-

proaches do not explicitly accommodate for gene flow after di-

vergence (Yang and Rannala 2010; Ence and Carstens 2011).

However, because speciation with limited gene flow appears to

be common in nature (Nosil 2008; Pinho and Hey 2010), species

delimitation should also take into account the process of diver-

gence with gene flow (Hey 2009, 2010). Most often, disruptive

selection is the main cause of divergence in spite of gene flow

(Pinho and Hey 2010), but intraspecific gene flow might also

play a role (Zhou et al. 2010). If two species have diverged with

occasional gene flow, SDMs accommodating only ILS are ex-

pected to collapse these species into a single lineage due to the

homogenizing effect of gene flow. Alternatively, if species are

not collapsed, gene flow could instead lead to underestimates of

divergence times between species (Nielsen and Wakeley 2001).

However, it is possible that even if gene flow is not accounted for,

some SDMs may still be robust to the impact of gene flow and

correctly separate species (Ence and Carstens 2011).

One way of incorporating gene flow into species delimitation

is via approximate Bayesian computation (ABC) methods. The

use of ABC techniques started in the field of population genetics

in 1997, but they have become very popular in phylogeogra-

phy, ecology, epidemiology, and phylogenetics (Beaumont 2010;

Bertorelle et al. 2010; Csilléry et al. 2010a; Fan and Kubatko

2011), and the literature shows an important increase in the num-

ber of published studies that have used ABC in recent years (Ap-

pendix S1). ABC represents a group of likelihood-free algorithms

that in their most basic formulation consist of (1) sampling pa-

rameter values from prior distributions to generate simulated data;

(2) calculating summary statistics (SuSt) from simulated and ob-

served data and the Euclidean distance between them; and (3)

approximating the posterior distribution of parameters with a re-

jection algorithm that retains those simulations that have an Eu-

clidean distance smaller than a prespecified threshold or tolerance

(Lopes and Beaumont 2010). This procedure represents the orig-

inal ABC formulation known as rejection-ABC, but step (3) has

been modified to include a weighted local linear regression to

correct the discrepancy between observed and simulated SuSt for

increasing accuracy (regression-ABC) (Beaumont et al. 2002).

In addition to parameters, different demographic models can

be compared to select models based on posterior probabilities

and/or Bayes factors. For example, in the context of rejection-

ABC, the frequency of retained simulations generated under one

model relative to all retained simulations represents its posterior

probability, given that all models have the same prior number of

simulations (Pritchard et al. 1999). An improved and more accu-

rate estimator of model probabilities includes an adjustment using

weighted multinomial logistic regression (Beaumont 2008). Re-

cently, a machine learning approach based on nonlinear neural

networks regression has been introduced for parameter estima-

tion and model choice that relaxes assumptions and outperforms

linear regression-ABC (Blum and François 2010). A complete

ABC analysis requires not only simulating and estimating param-

eters of models, but also validating and testing the accuracy of

the selected model using predictive tests (Bertorelle et al. 2010;

Csilléry et al. 2010a). Despite some recent criticisms about inco-

herent and illogical model inference (Templeton 2009, 2010a,b),

several authors have defended the validity of model comparison
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with ABC within a Bayesian framework (Beaumont et al. 2010;

Berger et al. 2010; Csilléry et al. 2010b). In addition, the pitfalls

of ABC in terms of model and prior misspecification, number and

kind of SuSt, and number of simulations, can be addressed with

quality controls based on pseudo-observed data and exploratory

simulations (Bertorelle et al. 2010).

We applied SDMs to lizards of the Liolaemus darwinii com-

plex (Squamata, Liolaemidae) that occupy sandy habitats in the

southern and central portions of the Monte Desert in Argentina

(Etheridge 1993). The complex includes L. darwinii, L. grosseo-

rum, and L. laurenti, which form a clade within the more inclusive

L. darwinii group (Camargo et al. 2012). Detailed morphological

studies revealed that L. laurenti (Catamarca, La Rioja, and San

Juan Provinces), and L. grosseorum from (Mendoza, Neuquén, La

Pampa, and Rı́o Negro Provinces), were distinct species from L.

darwinii based on diagnostic meristic characters (scale and pre-

cloacal pores), male color patterns, and tail and body proportions

(Etheridge 1992, 2001). The remaining geographic distribution

of L. darwinii has been partitioned into northern (L. darwinii-N)

and southern (L. darwinii-S) populations based on an apparent

distributional gap in central Mendoza Province (see Fig. 1), scale

count/color variation, and genetic differentiation (Etheridge 2001;

Morando et al. 2004; Abdala 2007). A mtDNA study recovered

a single southern (= L. darwinii-S) and several northern (N1 and

N2 = L. darwinii-N) clades, which were interpreted as candidate

species (Morando et al. 2004). In addition, based on paraphyletic

patterns in the mtDNA gene tree, geographic distributions, and

coalescent expectations, ILS and/or introgression was inferred

to occur between L. darwinii-N versus L. laurenti, and between

L. darwinii-S and L. grosseorum (Morando et al. 2004). Sub-

sequently, Abdala (2007) assigned L. darwinii-N and two lin-

eages of L. darwinii-S to different terminals in his phylogenetic

analyses, and concluded that they probably represent different

species pending more detailed analyses. These studies also found

that a morphologically distinct and probably parthenogenetic

form appears nested among L. darwinii-S and L. darwinii-N

(Morando et al. 2004; Abdala 2007).

Species trees based on multilocus datasets recovered a

sister relationship between L. laurenti and L. grosseorum

(Camargo et al. 2012). Based on these relationships, two different

diversification patterns appear to have occurred in this complex:

(1) a morphologically divergent species pair (L. laurenti vs. L.

grosseorum) with fully allopatric distributions; and (2) a morpho-

logically more conserved pair of lineages (L. darwinii-N vs. L.

darwinii-S) with nearly parapatric distributions. Herein, we (1)

introduce an ABC approach for delimiting species, (2) compare

the accuracy of ABC and other coalescent-based SDMs using

simulations, and (3) apply these methods to empirical data of the

L. darwinii complex, after excluding the parthenogen form be-

cause its possible hybrid parentage (M. Morando, unpubl. data)

Figure 1. Map of central Argentina showing localities for species

of the Liolaemus darwinii complex. Blue dots, L. darwinii-S; red

dots, L. darwinii-N; green dots, L. laurenti; orange dots, L. grosse-

orum; open dots, L. olongasta (used in species tree only). Numbers

in open circles represent the localities sampled in this study, which

are listed in Appendix S2.

cannot be handled by the SDMs used in this study (all assume

strictly bifurcating species trees).

Methods
SIMULATION TESTING

We simulated sequence data for the same speciation model used

by Ence and Carstens (2011), which consisted of four lineages (A,

B, C, and D) (Fig. 2A). We simulated 100 coalescent replicates

with the program ms (Hudson 2002) for a total of 61 gene copies
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Figure 2. Speciation models and simulation design for testing accuracy and analyzing empirical data with approximate Bayesian

computation (ABC). The speciation model (A) was used to generate pseudo-observed treatments that were subsequently analyzed

with SpeDeSTEM, BPP, and ABC (B). The speciation model (C) was used to test for speciation and estimate demographic parameters in

the Liolaemus darwinii complex. Numbers in parentheses represent sample sizes used in simulations.

(20 for A, B, and C, and one for D) and a variable number of loci

(1, 2, 4, and 10 loci) (Fig. 2B). A constant population size was

used for all lineages (θ = 4Neμ = 7) derived from the mean em-

pirical value among lineages in the observed data. The divergence

time (τ) between lineages A and B varied between 0.2Ne and

4Ne generations and the migration rate between these lineages

(m, the proportion of gene copies replaced by immigrant gene

copies each generation) was set to either Nem = 0 (no migration)

or Nem = 0.5 (moderate migration). Each combination of number

of loci, divergence time, migration rate was considered as a sepa-

rate treatment for analysis. Subsequently, we generated sequence

data for these coalescent genealogies using seq-gen (Rambaut and

Grassly 1997) and the same settings of Ence and Carstens (2011),

for a total of 500 base pairs (bp) and approximately 50 variables

sites per locus, similar to the observed values in our empirical data

(see Results). Sequence data for each locus in nexus format was

transformed to the phylip format for analysis with BPP using

the “seqConverter.pl v1.2” Perl script written by O. Bininda-

Emonds (available at http://www.molekularesystematik.uni-

oldenburg.de/33997.html). Nexus files were also transformed

to the input format of popABC (Lopes et al. 2009) with

the “nexus2table” script available from the following website:

http://code.google.com/p/popabc/.

The nexus files were used as input for analysis with

SpeDeSTEM using θ per site = 0.014, which equals θ per lo-

cus = 7. We ran 10 replicated analyses for each simulated dataset

using the same settings for the substitution models as those used

in seq-gen and subsampling five sequences per lineage in each

replicate. Based on AIC values, we calculated accuracy as the

mean model probabilities (ωi, the probability that model i is the

best model of the set) values across the 100 simulations of each

treatment for the model that considered the lineages A and B as

separate species.

The input files in phylip format were analyzed in BPP with

algorithm 0 and the fine-tune parameter ε = 15. The θ prior

followed a gamma distribution with parameters α = 2 and β =
143, which results in a mean θ = 0.014. The τ prior for the root

was also a gamma distribution with α = 2 and β = 57 to produce

a mean τ = 0.035 (∼20Ne). The step lengths for proposals in the

MCMC were automatically adjusted to obtain optimal acceptance

rates during the analysis that consisted of a burn-in phase of

50,000 steps and 100,000 posterior samples sampled every five

steps. We measured accuracy as the mean speciation probability

(the sum of the models supporting speciation between A and B;

following Leaché and Fujita 2010) across the 100 replicates of

each treatment.

The input files in popABC format (.len) were processed with

the “summdata” program of popABC to generate 12 global SuSt

(Table S1) to be used as pseudo-observed data (pods) in ABC

analyses. We excluded the population-specific SuSt because they
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cannot be compared between models with different numbers

of populations. We generated simulated SuSt for the speciation

model above (Fig. 2A) with the same fixed θ and Nem, but with

uniform priors for τ ranging between 0.04 and 6Ne. In addition,

we also simulated a model of no-speciation where A and B were

collapsed into a single lineage (Fig. 2B). One million simula-

tions for each model were concatenated into a single prior file

including a binary index parameter that identified the model un-

der which the simulations were generated (e.g., 0 = speciation, 1

= no-speciation) and the same 12 SuSt.

To evaluate the accuracy of ABC to distinguish between

speciation versus no-speciation models, we input the prior file

into the R package “abc” version 1.4 (Csilléry et al. 2012, http://

cran.r-project.org/web/packages/abc/index.html) to run the model

selection function “postpr.” This procedure was repeated for each

of the 100 pods simulated for each treatment to evaluate accuracy

in selecting the speciation model with the neural-network ABC

algorithm, which has been shown to outperform other algorithms

(Blum and François 2010). Tolerance was set to 0.0001 to retain

200 accepted simulations for estimating posterior distributions.

We calculated the mean posterior probability of the speciation

model across 100 pods to measure the accuracy under each treat-

ment. Even though posterior probabilities and model probabilities

are not comparable directly, we applied the criterion that a method

successfully delimited species when their accuracies were >95%

across the 100 pods.

All simulations were run in the marylou5 supercom-

puter cluster in the Fulton Supercomputing Lab at BYU

(https://marylou.byu.edu/). Perl scripts written for generating se-

quence data and SuSt under different treatments are deposited in

Dryad (doi:10.5061/dryad.4409k652).

Empirical Data

We sampled 398 individuals of L. darwinii from 134 local-

ities including the distribution of southern and northern lin-

eages, 69 individuals of L. grosseorum from 20 localities, and

38 individuals of L. laurenti from eight localities (Fig. 1,

Appendix S2). Tissue samples from liver and/or tail mus-

cle were preserved in absolute ethanol and stored at –20◦C.

Specimens were fixed in 10–20% formalin, later transferred

to 70% ethanol, and deposited in the herpetological collection

of the Centro Nacional Patagónico (LJAMM-CNP, CENPAT–

CONICET; http://www.cenpat.edu.ar/nuevo/colecciones03.html)

and the Bean Life Science Museum, Brigham Young Uni-

versity (http://mlbean.byu.edu/ResearchCollections/Collections/

ReptilesandAmphibians.aspx).

Genomic DNA was extracted with the DNAeasy Qiagen

kit (Qiagen, Valencia, CA).We used the Green Go Taq PCR

kit (Promega, Madison, WI) for all PCR reactions in PTC-200

DNA Engine (MJ Research, Waltham, MA) or GeneAmp PCR

9700 thermal cyclers (Applied Biosystems, Inc., Carlsbad, CA).

Sequencing reactions used the Big-Dye Terminator version 3.1

Cycle Sequencing Kit (Applied Biosystems, Inc.) in a GeneAmp

PCR 9700 thermal cycler (Applied Biosystems, Inc.). Sequenc-

ing products were cleaned with Sephadex G-50 Fine (GE Health-

care Bio-Sciencies AB, Piscataway, NJ) and sequenced in an ABI

3730xl DNA Analyzer (Applied Biosystems, Inc.). We sequenced

the cytochrome b (cyt b) mtDNA gene for all available individuals

of L. darwinii (including north and south lineages), L. grosseo-

rum, and L. laurenti (∼500 individuals) following protocols in

Morando et al. (2004). We subsampled 10 individuals across the

geographic distribution of each lineage representing the variation

found in mtDNA haplotypes for screening three anonymous nu-

clear loci (ANL) (Appendix S2). We sequenced three ANL (A1D,

A9C, and B6B) that were developed from the genomic DNA of an

L. darwinii individual (LJAMM-CNP 7097) following protocols

in Noonan & Yoder (2009). We generated approximately 200 ran-

dom fragments, cloned, sequenced, and BLAST searched these

to confirm they were anonymous, then designed primers for frag-

ments with confirmed anonymity and used the PCR temperature

profile of Noonan & Yoder (2009) to amplify ANL in all sampled

individuals.

Chromatograms were checked by eye and ambiguity codes

were used to represent polymorphisms of heterozygous individu-

als in Sequencher 4.7 (Gene Codes Corporation, Ann Arbor, MI).

Gametic phase of heterozygotes was resolved with the program

Phase 2.1.1 (Stephens et al. 2001). Sequences were aligned with

ClustalX 2.0.10 (Larkin et al. 2007) and inspected by eye to check

that there were no fixed heterozygotes at any polymorphic site to

insure we were not using multiple-copy markers (Thomson et al.

2010). Alignments were tested for recombination with the pro-

gram RDP3 beta35 (Martin et al. 2005). We estimated a gene

tree for each locus using BEAST 1.6.1 (Drummond and Rambaut

2007) based on a coalescent tree prior, 10 million generations

sampled every 1000 states, and a burn-in of 1000 trees. After

selecting an appropriate burn-in period with Tracer version 1.5

(Rambaut and Drummond 2007), the collection of posterior trees

was summarized as the consensus tree with the maximum clade

credibilities in TreeAnnotator (Drummond and Rambaut 2007).

For estimation of a species tree, we selected three individuals

to represent each lineage from localities distant from haploclade

boundaries or contact zones to minimize the potential impact

of intermixed/migrant individuals (Leaché 2009). We included

also L. olongasta, a closely related species to the focal clade

in this study, and L. boulengeri, an outgroup of the L. darwinii

group.

EMPIRICAL SPECIES DELIMITATION

We first evaluated alternative demographic scenarios for the L.

darwinii complex assuming that they actually consisted of four
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separate lineages using the program IMa2 (Hey 2010). Following

recommendations of the program’s manual, we ran 20 Metropolis-

coupled Monte Carlo Markov chains (MC3) with geometric heat-

ing (h1 = 0.96, h2 = 0.90). We also followed the author’s sug-

gestions and after preliminary runs, we set the upper bounds for

θ (100), τ (25), and M (10), and sampled 100,000 states after

discarding 250,000 initial states. We provided the species tree

estimated with ∗BEAST (see below) to be used as the guide tree

and specified a full model with migration between sampled pop-

ulations only (option –j3). Subsequently, we used log-likelihood

values to rank the full and the nested demographic models based

on information-theoretic criteria (Carstens et al. 2009). We eval-

uated a total of 20 nested models of the full migration model (all

migration rates estimated as different parameters), where migra-

tion rates were either set to be equal between sister species or

set to zero. The divergence time parameter estimated in mutation

units was multiplied by 2/θ to transform to coalescent units (Liu

et al. 2010).

We delimited species in the L. darwinii complex with ABC

via simulating a new speciation model consisting of a symmet-

ric four-species tree (with symmetric migration between sister

species) and a no-speciation model of two species that results

from collapsing each sister species pair of the speciation model

(Fig. 2C). We simulated four loci for both models and 20 gene

copies per lineage. Uniform priors for θ ranged between 0.1 and

30, prior τ between 0.04 and 8Ne, and prior Nem between 0.01

and 0.5. Using the same procedure as in the simulation testing

section, we calculated 12 global SuSt for the simulated sequence

data and for the empirical data. Again, simulated and observed

SuSt were input into R to perform ABC analysis with the postpr

command for estimating the posterior probability of the speci-

ation model with four species. Moreover, to obtain parameter

estimates for comparison with the results from IMa2, we gener-

ated a new prior with 44 (global and population-specific) SuSt

for the four-species model and for the observed data (Table S2).

Simulated and observed SuSt were analyzed with the abc com-

mand of the R-package “abc” (Csilléry et al. 2012), using logistic

transformation to insure that parameter estimates were within the

prior bounds used in simulations. In addition, we used 100 pods

to assess bias in parameter estimates as the difference between

the real parameter value and the mean estimated value. We also

calculated the relative bias with respect to the range of the prior

distributions, and parameter coverage, which is the percentage of

simulations where the true value falls within the 95% highest pos-

terior density (HPD). We assessed how well the simulated models

fit the observed data via a principal components analysis (PCA)

of simulated SuSt and observed SuSt. A good fit in this prior

predictive plot was interpreted when the observed SuSt occurred

within the cloud of simulated SuSt. Perl scripts written to gen-

erate simulated SuSt for species delimitation and for parameter

estimation with ABC are deposited in Dryad (doi:10.5061/dryad.

4409k652).

We analyzed the empirical dataset with SpeDeSTEM 0.9.4

(Ence and Carstens 2011) and BPP 2.1 (Yang and Rannala 2010)

for comparison with the ABC results. SpeDeSTEM is a java-

based pipeline that uses gene trees obtained with PAUP∗ to esti-

mate maximum-likelihood species trees with the program STEM

(Kubatko et al. 2009) for alternative models of species limits

that are evaluated with AIC (Ence and Carstens 2011). Best-fit

substitution models for the species delimitation dataset were es-

timated with jModelTest 0.1.1 from the pool of 88 competing

models using the Bayesian information criterion (Posada 2008).

Relative mutation rates of loci and average θ across lineages were

calculated with Migrate-n 3.2.1 (Beerli and Palczewski 2010),

using two independent maximum-likelihood runs each consisting

of 10 short chains and five long chains sampled every 50 steps,

for a total of 2000 and 30,000 generations, respectively, and a

burn-in period of 20,000 steps. The relative mutation rate of cyt

b was divided by 2 to account for the haploid status of this locus

(Kubatko et al. 2009). In SpeDeSTEM, we randomly subsampled

five sequences from each lineage in 50 replicates following the

manual’s recommendations (Ence and Carstens 2011) and tested

species limits for the sister-lineage pairs L. darwinii-N versus L.

darwinii-S and L. laurenti versus L. grosseorum.

We estimated a species tree with BEAST version 1.6.1

(Drummond and Rambaut 2007; ∗BEAST, Heled and Drummond

2010) to be used as a guide tree in BPP analyses. We ran two inde-

pendent MCMC analyses for 50 million generations with samples

taken every 4000 generations, and with the same prior distribu-

tions and model settings used in a recent study of the complete L.

darwinii group (Camargo et al. 2012). Log files were inspected in

Tracer version 1.5 (Rambaut and Drummond 2007) to determine

an appropriate burn-in sample to estimate the posterior distri-

bution of species trees. In BPP, we analyzed 20 sequences per

lineage and per locus (except L. laurenti, 16 sequences for cyt b)

using both algorithms 0 (ε = 5 and 10) and 1 (α = 2, m = 1 and

α = 1, m = 2) to specify the rjMCMC moves between alternative

models of species delimitation. In both cases, we varied the pa-

rameters α and β of the gamma-distributed priors for θ and τ to

take into account a range of speciation histories: large population

size/deep divergence (both priors with α = 2 and β = 2000), small

population size/shallow divergence (both priors with α = 1 and β

= 10), and large population size/shallow divergence (α = 2 and

β = 2000 for θ prior; α = 1 and β = 10 for τ prior) (Leaché and

Fujita 2010). We used the same relative rates per locus as spec-

ified in the SpeDeSTEM analyses. All runs consisted of 50,000

samples taken every five steps with a burn-in period of 10,000

steps.
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Figure 3. Accuracy of the BPP, SpeDeSTEM, and approximate Bayesian computation (ABC) methods for species delimitation under

varying numbers of loci (1–10 loci), divergence times (0.2–4Ne), and migration (Nem = 0–0.5). Accuracy represents the mean posterior

probability (for BPP and ABC) or the mean model probability (for SpeDeSTEM) of the correct speciation model (see Fig. 2A).

Results
SIMULATION TESTING

Overall, BPP had the highest accuracy and SpeDeSTEM had

the lowest while ABC was intermediate under most conditions

(Fig. 3). In the absence of migration, the limit of accuracy for BPP

was at very shallow divergences (0.3Ne) using four loci (Fig. 3C),

whereas ABC needed 10 loci to distinguish species that diverged

at 0.75Ne (Fig. 3D), and SpeDeSTEM detected species divergence
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at 1Ne with either four or 10 loci (Fig. 3C, D). Moreover, BPP

was able to delimit species successfully with only one locus at

0.75Ne whereas ABC and SpeDeSTEM failed to detect speciation

even at 4Ne (Fig. 3A). When gene flow occurred during the spe-

ciation process, both BPP and ABC were fairly robust showing

only slight decreases in accuracy, but SpeDeSTEM was heavily

impacted because it was unable to delimit species under all sim-

ulated conditions (Fig. 3E–H). In addition, none of the methods

was able to delimit species under any conditions with a single lo-

cus if there was speciation despite gene flow (Fig. 3E). In relative

terms, the accuracy of ABC was basically unaffected when gene

flow was included in the simulations (an average decrease across

all conditions of 0.05%), while BPP showed a drop of 8%, and

SpeDeSTEM decreased in accuracy by almost 27%.

EMPIRICAL SPECIES DELIMITATION

We sequenced 713 bp for cyt b, 692 bp for A1D, 481 bp for

A9C, and 415 bp for B6B. Twenty sequences were sampled per

lineage and per locus, but 16 cyt b sequences were obtained for

L. laurenti, and 12 A1D and 14 B6B sequences were included for

L. darwinii-S. The program Phase resolved the gametic phase of

73% (82 out of 113) heterozygous base calls from A1D, 93% (140

out of 150) from A9C, and 72% (58 out of 81) from B6B, at the

0.95 confidence level. The most likely, reconstructed haplotype

pairs were used in subsequent analyses for those sequences with

uncertain phases. No gaps were found in the multiple sequence

alignments in any locus. We did not find any fixed heterozygotes

at any polymorphic site, suggesting that ANL were single-copy

markers (Thomson et al. 2010), and we did not find evidence of

recombination in any of the loci analyzed in this study. The most

variable locus was cyt b with 19% of polymorphic sites (136 out of

713 bp) and in decreasing order of variation: A9C (6.9%, 33 out of

481 bp), A1D (6.6%, 46 out of 700 bp), and B6B (3.1%, 13 out of

415 bp). Gene trees show considerable discordance among them

and are not monophyletic within any of the four putative species

lineages (Fig. 4). Sequence data are deposited in GenBank with

the accession numbers given in Appendix S2.

The simplest demographic model selected in IMa2, with a

model probability of ωi = 0.21, was the one with no migration

between L. darwinii-N and L. darwinii-S, and with migration from

L. laurenti to L. grosseorum (Table S3). The estimated number

of migrants per generation from L. laurenti to L. grosseorum was

Nem∼0.05, based on M3>2 = 0.0587 and θ3 = 3.4 (4Nem = Mθ,

see IMa2 manual). The estimated divergence times between L.

darwinii-N and L. darwinii-S were τ = 0.45 substitutions/locus

(=0.4Ne) and τ = 0.83 for the L. laurenti–L. grosseorum pair

(=1.1Ne) (Table 1).

The ABC model selection for the pair L. darwinii complex

resulted in higher support for the speciation model with a posterior

probability of 0.996 compared to the no-speciation model. The

first three PC axes extracted approximately 65% of the total vari-

ance out of the 12 SuSt used for species delimitation with good

discrimination between the four-species versus two-species mod-

els when comparing PC 1 versus 2 and PC 1 versus 3 (Fig. 5A, B).

However, the observed SuSt was an outlier suggesting poor model

fitting (Fig. 5A–C). Error in parameter estimates ranged between

14% and 18% for θ and τ parameters, but reached 27% for the

migration parameter (Table 1). Only 40% of the variance in the

44 SuSt used for parameter estimation was extracted with the first

three PC axes and the observed SuSt also appears as an outlier

(Fig. 5D–F). The computation time of the prior file containing 2

million simulations of 12 SuSt for species delimitation (1 million

from each model) was reduced by running 20 independent jobs

in the marylou5 cluster (100,000 simulations per job), each of

which took approximately 2.8 h. If using a MacBook Pro laptop

with a 2.4 GHz Intel Core 2 Duo processor and 4 GB of memory

(2 × 2 GB 1067 MHz DDR3), the generation of the same prior file

would have taken approximately 138 h, based on the computation

time of 100 simulations. Model choice and parameter estimates

with the ABC procedure in R took less than 1 min in a MacBook

Pro laptop.

The relative mutation rates for loci were: 1.75 (cyt b), 0.83

(A1D), 1.00 (A9C), and 0.42 (B6B). Mean θ per site across the

four lineages analyzed was 0.0072. Based on the substitution mod-

els for each locus, relative mutation rates, and mean θ per site,

SpeDeSTEM analyses selected the model with all four lineages

as separate species with strong AIC support (Table 2). This model

had a model probability of ωi∼0.99, indicating that it has a 99%

chance of being the best model among the four alternatives ana-

lyzed. The model collapsing L. darwinii-N and L.darwinii-S had

very low support, whereas other models had nonsignificant model

likelihoods (Table 2). The computation time with SpeDeSTEM in

a MacBook Pro laptop was approximately 25 min.

Two independent runs in ∗Beast recovered an identical

species tree with L. darwinii-N and L.darwinii-S as a strongly

supported clade, the pair L. laurenti and L. grosseorum as a clade

with moderate support, and these two species pairs recovered as

sister clades with strong support (Fig. S1). Based on this guide

tree and the estimated relative mutation rates, BPP consistently

found very high speciation probabilities (1.0) for all internal nodes

across multiple analyses with different algorithms and prior dis-

tributions. Each separate analysis with BPP using different prior

settings took approximately 6.5 h in a MacBook Pro laptop.

Discussion
SPECIES DELIMITATION WITH ABC AND OTHER

METHODS

ABC is a powerful and flexible approach for model choice

and parameter estimation including, for example, the number of
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A - cyt b B - A1D  

C - A9C  D - B6B  
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Figure 4. Gene trees of loci sampled for species delimitation analyses. (A) cyt b, (B) A1D, (C) A9C, and (D) B6B. Each species lineage is

color-coded: L. darwinii-N (red), L. darwinii-S (blue), L. laurenti (green), and L. grosseorum (orange). Scale bars represent substitutions

per site.

Table 1. Demographic parameter estimates of the Liolaemus darwinii complex using IMa2 (based on best model, see Table S3) and

approximate Bayesian computation analyses. Subscripts of θ parameters identify populations used in the analysis: 0 = L. darwinii-N,

1 = L. darwinii-S, 2 = L. laurenti, and 3 = L. grosseorum. Subscripts of τ (divergence time) parameters represent the two diverging

populations. τa is the divergence time of the L. darwinii complex. Nem refers to the migration rate parameter (estimated number of

migrants per generation) from L. laurenti to L. grosseorum.

Method θ0 θ1 θ2 θ3 τ01 τ23 τa Nem

IMa2 6.80 2.33 2.63 3.41 0.40Ne 1.10Ne 3.09Ne 0.05
ABC 11.9 9.0 13.2 11.2 0.98Ne 3.08Ne 5.14Ne 0.27

Absolute bias 5.14 5.00 4.95 5.40 0.14 0.15 0.32 0.54
Relative bias 17% 17% 17% 18% 14% 15% 8% 27%

populations (Bertorelle et al. 2010). Based on the capabilities

of new computer programs for simulation with novel summary

statistics (i.e., popABC), and more sophisticated algorithms for

model choice (i.e., nonlinear regression-ABC), we applied this ap-

proach to species delimitation.We found that BPP outperformed

ABC and SpeDeSTEM in most cases but, as we expected, the

accuracy of the ABC method in detecting speciation did not de-

crease when there was gene flow, while BPP, and particularly

SpeDeSTEM, showed important decreases in accuracy. In addi-

tion, ABC successfully detected two speciation events in the L.

darwinii complex, despite biased estimates of demographic pa-

rameters. These findings of accurate model choice but estimation

error in model parameters are consistent with a recent ABC-based

study that was able to distinguish statistically between alternative

demographic models in spite of imprecise parameter estimates

(Peter et al. 2010).

Our study is the first to apply and evaluate the accuracy of an

ABC approach for species delimitation but previous studies have

also assessed the accuracy of SpeDeSTEM and BPP. Previous

simulations with SpeDeSTEM show that two species that have

diverged as recently as 0.5Ne generations ago can be distinguished

as separate lineages when θ = 10, and five loci and five sequences
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A

B

C

D

E

F

Figure 5. Prior predictive distributions of summary statistics (SuSt) used in approximate Bayesian computation analyses for species

delimitation (A, B, and C) and parameter estimation (D, E, and F) of the Liolaemus darwinii complex. PC, principal component, open dots,

simulated SuSt from the four-species model; gray dots, simulated SuSt from the two-species model (A, B, and C), gray square, observed

SuSt based on sequence data of four loci of the L. darwinii complex.
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per species are sampled (Ence and Carstens 2011). In comparison,

we obtained lower accuracies for similar conditions (accuracy of

∼75% at 0.5Ne with four loci, Fig. 3C) but this might be due to

the lower θ we used in our simulations (θ = 7). The low accuracy

of SpeDeSTEM is consistent with the low accuracy of STEM for

estimating species trees when there is limited information in the

data (which is often the case in recent speciation events), leading

to high uncertainty in gene trees and the estimated species tree

(Leaché and Rannala 2011).

Simulations with BPP found that this method could not dis-

tinguish separate species when they diverged 0.4Ne generations

ago without gene flow using five loci, five sequences per species,

and θ = 10 (mean accuracy ∼60%) but reached approximately

100% accuracy using 10 loci (Yang and Rannala 2010). Our re-

sults are consistent with previous simulations because we also

obtained very high accuracies (> 95%) at 0.3Ne when sampling

four to 10 loci but with more sequences per species (20) (Fig. 3C,

D). A recent, thorough evaluation of BPP under varying sampling

intensities (loci and sequences), model parameters, and popula-

tion models (Zhang et al. 2011) found that BPP can delimit species

with only one locus when 15–20 sequences per species are sam-

pled, similar to our simulation results (Fig. 3A). However, when

there was high migration (Nem = 1), BPP was unable to separate

species with a single locus even at very long divergence times

(τ = 4Ne), in agreement with our results (see Fig. 3E), and sup-

porting the notion that species delimitation based on a single locus

(e.g., DNA barcoding approaches, Hebert et al. 2004; Hebert and

Gregory 2005) will likely fail to detect new forms that are (or

have) diverged with gene flow. More generally, previous simula-

tions and our results suggest that BPP has lower accuracy in the

critical range 0.1 < Nem < 1, unless more loci and sequences are

included in the analyses.

Even though our implementation of ABC was not the most

accurate SDM in this study, ABC appeared to be almost immune

to the effects of gene flow for detecting lineage separation. This

ideal property of ABC for species delimitation probably derives

from the explicit incorporation of migration in the models and also

from using two SuSt in the analyses (mean and standard deviation

of MFS, see Table S1) that record information about migration

regimes in populations (Wakeley and Aliacar 2001). Although

ABC was less accurate than BPP, it should be noted that we spec-

ified very informative priors for BPP in the simulations (expected

θ and τ matched the true values), while we used uninformative

(uniform) priors for ABC. Given the significant impact of priors

in these analyses (Zhang et al. 2011), we expect that the accuracy

of ABC could be improved with a different prior specification

(see next section). In addition, ABC might be the least compu-

tationally efficient SDMs because it spends a considerable time

in the generation of prior data even for analyzing small datasets.

Nonetheless, the computational advantage of ABC approaches is

fully realized when very large datasets can be summarized in a few

SuSt, and/or when multiple processors can be used for generat-

ing, and subsequently, concatenating prior data from independent

simulations.

All three SDMs used in this study consistently detected four

separate species within the L. darwinii complex despite variable

population sizes and speciation with gene flow in the complex

(based on IMa2 estimates), both of which violate different as-

sumptions of these SDMs. These results suggest that these meth-

ods might be robust to the effects of limited gene flow, that our

study system represents an easy delimitation problem, or both. In

one scenario, long divergence times combined with little or no

gene flow and small population sizes facilitate species delimita-

tion (Ence and Carstens 2011). In the opposite scenario, shallow

divergence times, large population sizes, and postdivergence gene

flow make species delimitation more challenging due to exten-

sive gene tree conflict (ILS) and poorly resolved gene trees (Yang

and Rannala 2010). The comparison of the demographic esti-

mates from IMa2 and the results of the accuracy testing of SDMs

based on simulations, support the idea that the L. darwinii com-

plex fits the first, easy-delimitation scenario. The species-pair L.

darwinii-N versus L. darwinii-S diverged 0.4Ne without gene flow

and L. laurenti versus L. grosseorum diverged at 1.1Ne with very

little gene flow (Nem∼0.1), scenarios under which BPP showed

approximately 100% accuracy using four loci (Fig. 3C). In addi-

tion, ABC and SpeDeSTEM were approximately 95% accurate

(at 1Ne) and approximately 60% at 0.4Ne (extrapolating from the

accuracy at 0.3 and 0.5Ne), suggesting that the combination of

long divergence times and/or limited gene flow probably led to

congruent results among the three SDMs.

IMPROVING ABC

The flexibility and ease of implementation of the ABC framework

will probably encourage more systematists to use and improve its

accuracy for species delimitation and parameter estimation. To

improve the accuracy of the ABC method, a number of compo-

nents of the approach can be adjusted, including: model complex-

ity, number and kinds of SuSt, and parameter priors.

ABC methods can accommodate highly parameterized mod-

els and to exploit this ability to its maximum potential, more

realistic models can be conceived and compared with simpler

versions (Bertorelle et al. 2010). For example, population sizes

could be allowed to vary between and within lineages to account

for population expansion or contraction, while models including

population structure can also be formulated for correctly testing

between stable or varying population sizes (Peter et al. 2010).

The inclusion of population substructure within lineages in these

models will also help to evaluate the impact of intraspecific gene

flow in maintaining species distinctness in spite of interspecific

gene flow (Zhou et al. 2010).
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Table 2. Model selection with AIC criteria of alternative species delimitation profiles estimated with SpeDeSTEM based on 50 sub-

sampling replicates. Collapsed lineages are shown in parentheses. AIC, Akaike information criterion; k, number of parameters; �I , AIC –

AICmin; ωi , model probability. Lineages: dN, L. darwinii-N; dS, L. darwinii-S; Ll, L. laurenti; Lg, L. grosseorum.

Model Mean AIC k �i ωi Model-likelihood

dN, dS, Ll, Lg 715.0534 3 0 0.986736 1
(dN-dS), Ll, Lg 723.6726 2 8.61920 0.013261 0.013439
dN, dS, (Ll-Lg) 739.9219 2 24.86847 3.93E-06 3.98E-06
(dN-dS), (Ll-Lg) 750.2925 1 35.23914 2.20E-08 2.23E-08

Improvements of the ABC procedure might also include

using priors different from the uniform distributions used in

this study. Based on empirical patterns of variation in nature,

the migration rate and the divergence time parameters are fre-

quently sampled from exponential distributions whereas mutation

rate parameters are often drawn from log-uniform distributions

(Bertorelle et al. 2010). In addition, other kinds of SuSt can be

used that are more sensitive to detecting the relative contributions

of migration versus isolation in generating the observed genetic

data, such as the variance of pairwise sequence differences (Wake-

ley 1996; Nielsen and Wakeley 2001). This SuSt might capture

enough signal in the distribution of genetic variation between lin-

eages to discriminate between speciation in isolation versus with

gene flow, and it has been used in previous ABC approaches for

assessing simultaneous divergence among multiple taxon pairs

(Huang et al. 2011). Instead of increasing the number and dimen-

sionality of SuSt, which can affect the accuracy and efficiency

of ABC techniques (Beaumont et al. 2002; Csilléry et al. 2010a),

optimal combinations of informative SuSt about the parameter of

interest could be selected using a variety of approaches (Joyce and

Marjoram 2008; Wegmann et al. 2009; Blum and François 2010).

SPECIES LIMITS IN THE L. DARWINII COMPLEX

Species delimitation analyses with three different, coalescent-

based SDMs supported the distinctness of two sister lineages:

L. darwinii-N from L. darwinii-S. Previously, Etheridge (2001)

found some differences in male coloration (albeit not discrete

differences), and possible disjunct distributions between these

forms in south-central Mendoza Province. Later, based on a

phylogeographic analysis of the cyt b mtDNA gene, Morando et

al. (2004) found that populations of L. darwinii-S form a single,

well-supported clade with shallow divergences, whereas popula-

tions of L. darwinii-N did not comprise a single clade, because the

morphologically distinct L. laurenti was nested among the L. dar-

winii-N terminals. More recently, Abdala (2007) also recovered L.

darwinii-N and L. darwinii-S as sister taxa relative to L. laurenti

and L. grosseorum in a broad phylogenetic analysis of the L.

boulengeri group. Although L. laurenti and L. grosseorum are

already recognized as separate species given their morphological

distinctness (Etheridge 1992, 2001), new morphological analyses

will be required to establish diagnostic criteria for formal

description of L. darwinii-N as a new species because the type

locality of L. darwinii occurs within the range of L. darwinii-S

(Etheridge 1993).

Our study supported the distinctness of four species in the

L. darwinii complex using coalescent-based, multilocus SDMs

despite gene exchange between partially sympatric or parap-

atric lineages. The overlapping ranges of L. darwinii-S and L.

grosseorum in the south, and at least two sympatric localities be-

tween L. darwinii-N and L. laurenti (localities 8 and 9, see Fig.

1), probably account for the high migration estimates between

these nonsister lineages based on the selected IMa2 model (Ta-

ble S3). More interestingly, the inference of gene flow between

L. laurenti and L. grosseorum is surprising because the nearest

localities between these species are separated by approximately

330 km (localities 9 and 48, Fig. 1). Further studies, combin-

ing phylogeographic and paleoclimatic niche modeling (Knowles

et al. 2007; Richards et al. 2007), will be necessary to evaluate

whether gene flow only occurred in the past as a result of ge-

ographic contact between the historical ranges of these species.

Similar instances of occasional gene flow and hybridization have

also been shown for closely related species of Liolaemus based

on genetic and morphological data (Olave et al. 2011).

The hypothesized parthenogenetic form (a morphologically

distinct collection of all-female samples), which appears nested

between L. darwinii-N and L. darwinii-S, was not included in

the delimitation analysis because of its possible hybrid origin (M.

Morando, unpubl. data). Although this parthenogen is probably

reproductively isolated from other lineages and therefore a valid

new species, SDMs can still be applied to confirm the genetic

distinctness of this lineage within an ABC framework via an

admixture model, and/or with new likelihood-based approaches

that can test for hybrid speciation (Kubatko 2009).

Conclusions
While ABC approaches are demonstrating the benefits of simulta-

neous model choice and parameter estimation in phylogeographic

inference (Carstens and Knowles 2010), our results also suggest
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that the model-based ABC framework represents an appropriate

solution to the problem of species delimitation, especially in the

face of divergence with gene flow. The ABC approach used in this

study can delimit species while incorporating one critical param-

eter, the migration rate, which can potentially erase a signature

of species divergence and hamper the ability to detect separate

species. However, caution should be used when applying ABC

because poorly fitting models can lead to biased estimates and

therefore, model checking should be an integral part of the ABC

methodology (Bertorelle et al. 2010; Csilléry et al. 2010a).

In addition to the coalescent-based SDMs evaluated and ap-

plied in this study, there are multiple other methods that have

been introduced and used empirically with genetic data, includ-

ing: clustering methods (Pritchard et al. 2000; Huelsenbeck and

Andolfatto 2007; Hausdorf and Hennig 2010), networks (Chen

et al. 2010; Flot et al. 2010), a mixed Yule-coalescent model (Pons

et al. 2006), measures of genealogical exclusivity (Cummings et

al. 2008), and non- and semi-parametric approaches (O’Meara

2010). In practice, these new SDMs enable the discovery of cryp-

tic, evolutionary independent lineages, but traditional taxonomic

practices still demand formal morphological descriptions before

applying valid names to new forms (Bauer et al. 2011). Neverthe-

less, a genealogical and statistical perspective for discovering and

describing new species will be required to achieve the ultimate

goal of a phylogenetically informed and stable taxonomy (Fujita

and Leaché 2011) consistent with current views about species

concepts (de Queiroz 2011).

In addition to SDMs based on genetic data, other kinds of

data can be used to aid in species delimitation when genetic data

are unavailable or uninformative. For example, new criteria have

been introduced to delimit species with ecological (Raxworthy

et al. 2007; Rissler and Apodaca 2007) and morphological data

(Ezard et al. 2010; Zapata and Jiménez 2012), and integrative ap-

proaches comparing patterns of divergence across multiple traits

are becoming common practice for species delimitation (Harring-

ton and Near 2012). A fully integrated approach with different

types of data will consist of a single, joint analysis instead of

evaluating concordance between several independent analyses.

Moreover, this approach could also incorporate other processes

generating gene tree discordance (i.e., gene flow, etc.) and infer

species trees and species boundaries using individual-based data

with uncertain species assignments (O’Meara 2010). However,

there still are major challenges that new SDMs should address

including the oversplitting effect due to intraspecific structure

(Niemiller et al. 2012), and the delimitation of species with very

few (even single) specimens in extremely rare species that appear

to be rather common in nature (Lim et al. 2012).
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Leaché, A. D. 2009. Species tree discordance traces to phylogeographic clade
boundaries in North American fence lizards (Sceloporus). Syst. Biol.
58:547–559.
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